### Annual Drinking Water Quality Report 2024 Covering Calendar Year 2023

Clay-Roane Public Service District 1100 Elk River Road, Procious, WV 25164 PWSID# 3300806

Clay County Public Service District 247 Main St, P. O. Box 130, Clay, WV 25043 PWSID# 3300809 PWSID# 3300810 PWSID# 3300811

June 19, 2024

## Why am I receiving this report?

In compliance with the Safe Drinking Water Act Amendments, **the Clay-Roane PSD**, **Clay County PSD** (**Ivydale, Triplett Ridge, and Hartland**), is providing their customers with this annual water quality report. This report explains where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. The information in this report shows the results of our monitoring for the period of January 1st to December 31st, 2023 or earlier if not on a yearly schedule.

If you have any questions concerning this report, you may contact General Manager, **Crystal Adkins at 304-548-5209 for those customers being served by Clay-Roane PSD**. If you have any further questions, comments or suggestions, please attend any of our regularly scheduled board meetings held on the **3rd Monday of every month at 6:00 pm on Zoom, except once a quarter it will be in person.** 

If you have any questions concerning this report, you may contact **Beverly Pierson at 304-587-7579 for those customers being served by the Clay County PSD**. If you have any further questions, comments or suggestions, please attend any of our regularly scheduled board meetings held on the 2<sup>nd</sup> Thursday of every month at 11:00 AM at the Clay County PSD office located on 247 Main Street in Clay West Virginia.

### Where does my water come from?

Your water source is **surface** water from the Elk River.

Clay County PSD **purchases** your drinking water from the Clay Municipal Water Works which uses **surface** water from the Elk River

### **Source Water Assessment**

A Source Water Assessment was conducted in 2015 by the West Virginia Bureau for Public Health (WVBPH). The intake that supplies drinking water to the town of **Clay and the Clay-Roane PSD** has a higher susceptibility to contamination, due to the sensitive nature of surface water supplies and the potential contaminant sources identified within the area. This does not mean that these intakes will become contaminated; only that conditions are such that the surface water could be impacted by a potential contaminant source. Future contamination may be avoided by implementing protective measures. The source water assessment report which contains more information is available for review or a copy will be provided to you at our office during business hours or from the WVBPH 304-558-2981.

## Why must water be treated?

All drinking water contains various amounts and kinds of contaminants. Federal and state regulations establish limits, controls, and treatment practices to minimize these contaminants and to reduce any subsequent health effects.

### **Contaminants in Water**

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits of contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The source of drinking water (both tap and bottled water) includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals, and, in some cases radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

**Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

**Inorganic contaminants**, such as salts and metals, which can be naturally-occurring, or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, farming.

**Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

**Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

**Radioactive contaminants**, which can be naturally-occurring or the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

# Water Quality Data Table

Definitions of terms and abbreviations used in the table or report:

- MCLG Maximum Contaminant Level Goal, or the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- MCL Maximum Contaminant Level, or the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technique.
- **MRDLG Maximum Residual Disinfectant Level Goal**, or the level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect benefits of use of disinfectants to control microbial contaminants.
- **MRDL Maximum Residual Disinfectant Level**, or the highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary to control microbial contaminants.
- AL Action level, or the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.
- **TT Treatment Technique**, or a required process intended to reduce the level of a contaminant in drinking water.

Abbreviations that may be found in the table:

- **ppm** parts per million or milligrams per liter
- **ppb** parts per billion or micrograms per liter
- NTU Nephelometric Turbidity Unit, used to measure cloudiness in water!

- NE not established
- N/A not applicable
- **MDL** Maximum Detection Level
- ND Non-Detect, lab analysis indicates non-detect at or above Maximum Detection Level
- pCi/L Picocuries per Liter, a measure of the radioactivity in water
- mrem/yr Millirems per Year, measure of radiation absorbed by the body
- **MPA** Monitoring Period Average, an average of sample results obtained during a defined time frame, common examples of monitoring periods are monthly, quarterly, and yearly
- **RAA** Running Annual Average, an average of sample results obtained over the most current 12 months and are used to determine compliance with MCL's
- LRAA Location Running Annual Average, average of sample results for a sample taken at a particular monitoring location during the previous four calendar quarters

The **Clay-Roane PSD**, and **Clay County PSD**, routinely monitor for contaminants in your drinking water according to federal and state laws. The tables below show the results of our monitoring for contaminants.

#### Testing Results for: CLAY-ROANE PSD (PROCIOUS DISTRICT)

| Microbiological                                             | Result | MCL | MCLG | Typical Source |  |
|-------------------------------------------------------------|--------|-----|------|----------------|--|
| No Detected Results were Found in the Calendar Year of 2023 |        |     |      |                |  |
|                                                             |        |     |      |                |  |

| Regulated Contaminants | Collection<br>Date | Highest<br>Value | Range<br>(low/high) | Unit | MCL | MCLG | Typical Source                                                                              |
|------------------------|--------------------|------------------|---------------------|------|-----|------|---------------------------------------------------------------------------------------------|
| BARIUM                 | 4/11/2023          | 0.0302           | 0.0302              | ppm  | 2   | 2    | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits  |
| NITRATE                | 4/3/2023           | 0.346            | 0.346               | ppm  | 10  | 10   | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits |
| NITRATE-NITRITE        | 4/3/2023           | < 0.05           | < 0.05              | ppm  | 10  | 10   | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits |

| Disinfection Byproducts          | Sample Point                       | Monitoring<br>Period | Highest<br>LRAA | Range (low/high) | Unit | MCL | MCLG | Typical Source                            |
|----------------------------------|------------------------------------|----------------------|-----------------|------------------|------|-----|------|-------------------------------------------|
| TOTAL HALOACETIC<br>ACIDS (HAA5) | REED FORK -<br>ADKINS<br>RESIDENCE | 2023                 | 39              | 21.5 - 39        | ppb  | 60  | 0    | By-product of drinking water disinfection |
| ТТНМ                             | REED FORK -<br>ADKINS<br>RESIDENCE | 2023                 | 40              | 9.5 - 40         | ppb  | 80  | 0    | By-product of drinking water chlorination |

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

....

Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or nervous system, and may have an increased risk of getting cancer.

| Lead and Copper | Monitoring<br>Period | 90 <sup>th</sup><br>Percentile | Range<br>(low/high) | Unit | AL  | Sites<br>Over AL | Typical Source                                                                                               |
|-----------------|----------------------|--------------------------------|---------------------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------|
| COPPER, FREE    | 2023                 | 0.315                          | 0.005 – 1.1814      | ppm  | 1.3 | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits; Leaching from wood<br>preservatives |
| LEAD            | 2023                 | < 5                            | 0.5 - < 5           | ppb  | 15  | 1                | Corrosion of household plumbing systems;<br>Erosion of natural deposits                                      |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

CLAY-ROANE PSD (PROCIOUS DISTRICT) is working towards identifying service line materials throughout the water distribution supply. The service line inventory is required to be submitted to the state by October 16, 2024. The most up to date inventory is located at Clay Roane Public Service District Office, if you have any questions about our inventory, please contact CRYSTAL D. ADKINS at 304-548-5209.

| Chlorine/Chloramines<br>Maximum Disinfection Level | MPA    | MPA Units | RAA  | RAA Units |
|----------------------------------------------------|--------|-----------|------|-----------|
| 2023 - 2023                                        | 2.0000 | MG/L      | 1.98 | MG/L      |
|                                                    |        |           |      |           |

| Lowest Month for Removal Date Value      |      |   |                                      |
|------------------------------------------|------|---|--------------------------------------|
| CARBON, TOTAL 8/15/2023 2.81 1.12 – 2.81 | MG/L | 0 | Naturally present in the environment |

|           | Monitoring<br>Period | MCL      | Range<br>(low/high) | Unit | Lowest monthly % <0.3<br>NTU (TT if < 95%) | Violation | Typical Source          |
|-----------|----------------------|----------|---------------------|------|--------------------------------------------|-----------|-------------------------|
| TURBIDITY | 2023                 | TT=1 NTU | 0.03 - 0.28         | NTU  | 99.73%                                     | No        | Soil runoff and erosion |

| adiological Contaminants Collection Highest Range<br>Date Value (low/hig | Unit | MCL | MCLG | Typical Source |
|--------------------------------------------------------------------------|------|-----|------|----------------|
|--------------------------------------------------------------------------|------|-----|------|----------------|

| GROSS ALPHA, EXCL.<br>RADON & U | 4/14/2022 | -0.368 | -0.368 | pCi/L | 15 | 0 | Erosion of natural deposits |
|---------------------------------|-----------|--------|--------|-------|----|---|-----------------------------|
| RADIUM-228                      | 4/14/2022 | 0.135  | 0.135  | pCi/L | 5  | 0 | Erosion of natural deposits |
| COMBINED URANIUM                | 4/14/2022 | 0.019  | 0.019  | ppb   | 30 | 0 | Erosion of natural deposits |

| Secondary Contaminants-Non Health Based<br>Contaminants-No Federal Maximum<br>Contaminant Level (MCL) Established. | Collection Date | Highest Value | Range<br>(low/high) | Unit | SMCL  |
|--------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------|------|-------|
| ALKALINITY, TOTAL                                                                                                  | 8/15/2023       | 42.7          | 16.3 – 42.7         | MG/L | 10000 |
| CARBON, TOTAL                                                                                                      | 8/15/2023       | 2.81          | 1.12 – 2.81         | ppm  | 10000 |
| NICKEL                                                                                                             | 4/11/2023       | < 0.005       | < 0.005             | MG/L | 0.1   |
| SODIUM                                                                                                             | 4/11/2023       | 2.71          | 2.71                | MG/L | 1000  |

| Unresolved<br>Deficiency<br>Date Identified | Facility                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8/16/2023                                   | MONITORING SYSTEM         | The system utilizes very old monitoring equipment. For instance the system is<br>using a Hach 1720E in-line turbidimeter with an sc100 controller. This instrument is<br>reportedly no longer being supported by the manufacturer and thus cannot be<br>properly calibrated. The system is using a benchtop to verify values but calibration<br>of the inline can't be done properly at this time. Since monitoring equipment is not<br>properly calibrated (64CSR77-4.9) the system should review all monitoring<br>equipment for replacement with newer currently supported instruments which can<br>be properly calibrated. Please ensure all monitoring equipment is properly<br>calibrated. |
| 8/16/2023                                   | OPERATOR<br>CERTIFICATION | The chief water operator is not properly certified for the system at this time.<br>(64CSR4-5.4.a) Mr. Burdette's operators certification has expired and he has been<br>given a 60-day extension to obtain CEH's for renewal of his certification. Please<br>ensure the chief water operator follows through with obtaining his CEH's and is<br>properly certified for the system.                                                                                                                                                                                                                                                                                                               |
| 8/16/2023                                   | TREATMENT                 | The chlorine room does not have a properly functioning leak detector. (64CSR77-<br>7.4.c)Please ensure the chlorine room has a properly functioning leak detector. Not<br>having a properly functioning chlorine leave detector is an extreme danger to the<br>staff of the system, the visitors to the office, and even others nearby such are<br>residents in nearby houses or possibly even fishermen floating by on the river.<br>Beside a safety issue it also poses a liability issue should someone be exposed to<br>chlorine gas with no warning from a leak detector system.                                                                                                            |

Chlorine can be solid, liquid, or a gas additive used for the control microbes in drinking water. Drinking water that has not been treated with chorine or some other form of disinfectant or process may or may not contain harmful bacteria. Untreated drinking water may cause gastrointestinal distress or other health problems.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present.

During the 2023 calendar year, we had the below noted violation(s) of drinking water regulations.

| Compliance Period     | Analyte                          | Comments                      |  |
|-----------------------|----------------------------------|-------------------------------|--|
| 4/1/2023 - 6/30/2023  | MONITORING, ROUTINE (DBP), MAJOR | TOTAL HALOACETIC ACIDS (HAA5) |  |
| 4/1/2023 - 6/30/2023  | MONITORING, ROUTINE (DBP), MAJOR | TTHM                          |  |
| 4/1/2023 - 6/30/2023  | MONITORING, ROUTINE (DBP), MAJOR | CARBON, TOTAL                 |  |
| 4/1/2023 - 6/30/2023  | MONITORING, ROUTINE (DBP), MAJOR | CARBON, TOTAL                 |  |
| 4/1/2023 - 6/30/2023  | MONITORING, ROUTINE (DBP), MAJOR | ALKALINITY, TOTAL             |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | STYRENE                       |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | ETHYLBENZENE                  |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | TOLUENE                       |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | BENZENE                       |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | CHLOROBENZENE                 |  |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR        | TETRACHLOROETHYLENE           |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | 1,1,2-TRICHLOROETHANE         |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | TRICHLOROETHYLENE             |  |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR        | 1,2-DICHLOROPROPANE           |  |

|                       | 1                         |                            |
|-----------------------|---------------------------|----------------------------|
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | CARBON TETRACHLORIDE       |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | 1,1,1-TRICHLOROETHANE      |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | 1,2-DICHLOROETHANE         |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | TRANS-1,2-DICHLOROETHYLENE |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | 1,1-DICHLOROETHYLENE       |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | VINYL CHLORIDE             |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | P-DICHLOROBENZENE          |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | O-DICHLOROBENZENE          |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | DICHLOROMETHANE            |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | XYLENES, TOTAL             |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | CIS-1,2-DICHLOROETHYLENE   |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | 1,2,4-TRICHLOROBENZENE     |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | ARSENIC                    |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | BARIUM                     |
| 1/1/2023 – 12/31/2023 | MONITORING, ROUTINE MAJOR | CADMIUM                    |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | CHROMIUM                   |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | CYANIDE                    |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | FLUORIDE                   |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | MERCURY                    |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | NICKEL                     |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | SODIUM                     |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | ANTIMONY, TOTAL            |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | BERYLLIUM, TOTAL           |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | THALLIUM, TOTAL            |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | SELENIUM                   |
| 1/1/2023 - 12/31/2023 | MONITORING, ROUTINE MAJOR | NITRATE                    |
|                       | •                         | •                          |

#### Additional Required Health Effects Language:

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4761).

#### Testing Results for: CLAY CO P S D - IVYDALE

| Microbiological                                             | Result | MCL | MCLG | Typical Source |  |
|-------------------------------------------------------------|--------|-----|------|----------------|--|
| No Detected Results were Found in the Calendar Year of 2023 |        |     |      |                |  |

| Disinfection Byproducts          | Sample Point              | Monitoring<br>Period | Highest<br>LRAA | Range (low/high) | Unit | MCL | MCLG | Typical Source                            |
|----------------------------------|---------------------------|----------------------|-----------------|------------------|------|-----|------|-------------------------------------------|
| TOTAL HALOACETIC<br>ACIDS (HAA5) | LAUREL<br>NURSING<br>HOME | 2023                 | 45.5            | 30 - 66          | ppb  | 60  | 0    | By-product of drinking water disinfection |
| ТТНМ                             | LAUREL<br>NURSING<br>HOME | 2023                 | 49.75           | 24 - 82          | ppb  | 80  | 0    | By-product of drinking water chlorination |

| Lead and Copper | Monitoring<br>Period | 90 <sup>th</sup><br>Percentile | Range<br>(low/high) | Unit | AL  | Sites<br>Over AL | Typical Source                                                                                               |
|-----------------|----------------------|--------------------------------|---------------------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------|
| COPPER, FREE    | 2021                 | 0.0268                         | 0.0023 - 0.0449     | ppm  | 1.3 | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits; Leaching from wood<br>preservatives |
| LEAD            | 2021                 | 0.34                           | 0.12 - 1.4          | ppb  | 15  | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits                                      |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

CLAY CO P S D - IVYDALE is working towards identifying service line materials throughout the water distribution supply. The service line inventory is required to be submitted to the state by October 16, 2024. The most up to date inventory is located Clay County Public Service District Office, if you have any questions about our inventory, please contact BEVERLY S. PIERSON at 304-587-7579.

| Chlorine/Chloramines<br>Maximum Disinfection Level | MPA  | MPA Units | RAA  | RAA Units |
|----------------------------------------------------|------|-----------|------|-----------|
| 2023                                               | 1.95 | MG/L      | 1.07 | MG/L      |

During the 2023 calendar year, we had no violation(s) of drinking water regulations.

| Compliance Period Analyte Comments |  |
|------------------------------------|--|
|------------------------------------|--|

Additional Required Health Effects Language:

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

There are no additional required health effects violation notices.

Some or all of our drinking water is supplied from another water system. The table below lists all of the drinking water contaminants, which were detected during the 2023 calendar year from the water systems that we purchase drinking water from.

| Analyte   | Facility        | Highest Value | Unit | Month Occurred |
|-----------|-----------------|---------------|------|----------------|
| Turbidity | Treatment Plnat | 1.8           | NTU  | October        |

| Regulated<br>Contaminants       | Collection<br>Date                | Water System                | Highest<br>Value  | Range<br>(low/high) | Unit      | MCL              | MCLG                    | Typical Source                                                                                                          |  |  |
|---------------------------------|-----------------------------------|-----------------------------|-------------------|---------------------|-----------|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| BARIUM                          | 6/28/2023                         | CLAY WATER DEPT             | 0.0428            | 0.0482              | ppm       | 2                | 2                       | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of natural deposits                     |  |  |
| NITRATE                         | 9/5/2023                          | CLAY WATER DEPT             | 0.08              | 0.08                | ppm       | 10               | 10                      | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits                 |  |  |
| NITRIE                          | 7/13/2021                         | CLAY WATER DEPT             | 0.11              | 0.11                | ppm       | 10               | 10                      | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits                 |  |  |
| TETRACHLOROETHY<br>LENE         | 10/10/2023                        | CLAY WATER DEPT             | 1.8               | 1.8                 | ppb       | 5                | 0                       | Discharge from factories and dry cleaners                                                                               |  |  |
| GROSS ALPHA, EXCL.<br>RADON & U | 9/13/22                           | CLAY WATER DEPT             | 0.221             | 0.221               | pCi/<br>L | 15               | 0                       | Erosion of natural deposits                                                                                             |  |  |
| RADIUM-228                      | 9/13/22                           | CLAY WATER DEPT             | 0.476             | 0.476               | pCi/<br>L | 5                | 0                       | Erosion of natural deposits                                                                                             |  |  |
| Lead and Copper                 | Monitoring<br>Period<br>2020-2022 | 90 <sup>th</sup> Percentile | Range<br>Low/high | Unit                | AL        | Sites<br>over AL | household<br>natural de | Typical Source – Corrosion of<br>household plumbing erosion of<br>natural deposits/leaching from wood<br>preservatives. |  |  |
| COPPER, FREE                    | 2020-2022                         | 0.0133                      | 0.0014-<br>0.0479 | ppm                 | 1.3       | 0                | systems; E              | Corrosion of household plumbing<br>systems; Erosion of natural deposits;<br>Leaching from wood preservatives            |  |  |
| LEAD                            | 2020-2022                         | 1                           | 0.044-2.3         | ppb                 | 15        | 0                |                         | of household plumbing;<br>natural deposits                                                                              |  |  |

| Secondary Contaminants Collection Date Water System |           | Water System    | Highest<br>Value | Range<br>(low/high) | Unit | SMCL  |
|-----------------------------------------------------|-----------|-----------------|------------------|---------------------|------|-------|
| ALKALINITY, TOTAL                                   | 2023      | CLAY WATER DEPT | 77.5             | 24.8 -77.5          | MG/L | 10000 |
| ALUMINUM                                            | 2/14/2023 | CLAY WATER DEPT | 0.67             | 0.67                | MG/L | 0.05  |
| BORON, TOTAL                                        | 7/13/2021 | CLAY WATER DEPT | 9.4              | 8.6 - 9.4           | UG/L |       |
| CALCIUM                                             | 8/17/2021 | CLAY WATER DEPT | 14400            | 12800 - 14400       | UG/L |       |
| CARBON, TOTAL                                       | 2023      | CLAY WATER DEPT | 1.8              | 0.93 – 1.8          | ppm  | 10000 |
| CHLORIDE                                            | 7/13/2021 | CLAY WATER DEPT | 8.7              | 7.9 - 8.7           | MG/L | 250   |
| CHLORINE                                            | 11/2023   | CLAY WATER DEPT | 1.4              | 1.4                 | MG/L | 4     |
| GIARDIA LAMBLIA                                     | 12/3/2019 | CLAY WATER DEPT | 1                | 0 - 1               |      | 1     |
| IRON                                                | 2/14/2023 | CLAY WATER DEPT | 0.065            | 0.065               | MG/L | 0.3   |
| MAGNESIUM                                           | 2/14/2023 | CLAY WATER DEPT | 3900             | 3900                | UG/L |       |
| MANGANESE                                           | 2/14/2023 | CLAY WATER DEPT | .015             | 0.015               | MG/L | 0.05  |
| PH                                                  | 5/18/2020 | CLAY WATER DEPT | 8.9              | 8.9                 | SU   | 8.5   |
| POTASSIUM                                           | 8/17/2021 | CLAY WATER DEPT | 1540             | 1330 - 1540         | UG/L |       |
| SODIUM                                              | 8/17/2021 | CLAY WATER DEPT | 5.32             | 5.2 - 5.32          | MG/L | 1000  |
| SULFATE                                             | 8/17/2021 | CLAY WATER DEPT | 37.8             | 29.9 - 37.8         | MG/L | 250   |
| ZINC                                                | 7/13/2021 | CLAY WATER DEPT | 0.0056           | 0.0025 - 0.0056     | MG/L | 5     |

| Unresolved<br>Deficiency<br>Date Identified | Facility          | Comments                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/2/2020                                   | LOWER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank in a different location to close this deficiency. The Tank is severely corroded and due to this corrosion, it is no longer in service.                                                                                  |
| 12/2/2020                                   | UPPER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank adjacent to the existing tank to close this deficiency. The tank is severely corroded and could fail at any time.                                                                                                       |
| 10/26/2023                                  | LOWER MAYSEL TANK | The storage tank has holes. (64CSR77-9.1.1) During a previous tank cleaning and sandblasting project it was discovered the tank walls was severely dimpled due to interior corrosion and numerous small holes existed in the center of many of the dimples. Please ensure the storage tank holes are repaired. The system has a project where the tank is to be replaced. |

#### Please Note: Because of sampling schedules, results may be older than 1 year.

During the 2023 calendar year, the water systems that we purchase water from had the below noted violation(s) of drinking water regulations.

| Water System    | Туре | e Category |      | Compliance Period |  |
|-----------------|------|------------|------|-------------------|--|
| CLAY WATER DEPT | None | None       | None | None              |  |

There are no additional required health effects violation notices.

There are no additional required health effects notices.

This Consumer Confidence Report is not being mailed to each customer. A copy can be provided upon request by calling our office at 304-587-7579.

#### Testing Results for: CLAY CO P S D-TRIPLETT RIDGE

| Microbiological                                             | Result                        |                      | MCL             |                  |      |     | MCLG | Typical Source                            |  |  |
|-------------------------------------------------------------|-------------------------------|----------------------|-----------------|------------------|------|-----|------|-------------------------------------------|--|--|
| No Detected Results were Found in the Calendar Year of 2023 |                               |                      |                 |                  |      |     |      |                                           |  |  |
|                                                             |                               |                      |                 |                  |      |     |      |                                           |  |  |
| Disinfection Byproducts                                     | Sample Point                  | Monitoring<br>Period | Highest<br>LRAA | Range (low/high) | Unit | MCL | MCLG | Typical Source                            |  |  |
| TOTAL HALOACETIC<br>ACIDS (HAA5)                            | 4476<br>TRIPLETT<br>RIDGE DOH | 2023                 | 35.5            | 21 - 42          | ppb  | 60  | 0    | By-product of drinking water disinfection |  |  |
| ТТНМ                                                        | 4476<br>TRIPLETT<br>RIDGE DOH | 2023                 | 44.5            | 17 - 79          | ppb  | 80  | 0    | By-product of drinking water chlorination |  |  |

| Lead and Copper | Monitoring<br>Period | 90 <sup>th</sup><br>Percentile | Range<br>(low/high) | Unit | AL  | Sites<br>Over AL | Typical Source                                                                                               |
|-----------------|----------------------|--------------------------------|---------------------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------|
| COPPER, FREE    | 2023                 | 0.0101                         | 0.0018 - 0.0251     | ppm  | 1.3 | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits; Leaching from wood<br>preservatives |
| LEAD            | 2023                 | 0.4                            | 0.08 - < 0.5        | ppb  | 15  | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits                                      |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

CLAY CO P S D-TRIPLETT RIDGE is working towards identifying service line materials throughout the water distribution supply. The service line inventory is required to be submitted to the state by October 16, 2024. The most up to date inventory is located Clay County Public Service District Office, if you have any questions about our inventory, please contact BEVERLY S. PIERSON at 304-587-7579.

| Chlorine/Chloramines<br>Maximum Disinfection Level | MPA  | MPA Units | RAA  | RAA Units |
|----------------------------------------------------|------|-----------|------|-----------|
| 2023                                               | 0.95 | MG/L      | 0.95 | MG/L      |

During the 2023 calendar year, we had no violation(s) of drinking water regulations.

| Compliance Period | Analyte | Comments |
|-------------------|---------|----------|
|                   |         |          |

There are no additional required health effects notices.

There are no additional required health effects violation notices.

Some or all of our drinking water is supplied from another water system. The table below lists all of the drinking water contaminants, which were detected during the 2023 calendar year from the water systems that we purchase drinking water from.

| Analyte   | Facility        | Highest Value | Unit | Month Occurred |
|-----------|-----------------|---------------|------|----------------|
| Turbidity | Treatment PInat | 1.8           | NTU  | October        |

| Regulated<br>Contaminants | Collection<br>Date | Water System    | Highest<br>Value | Range<br>(low/high) | Unit | MCL | MCLG | Typical Source                                                                                          |
|---------------------------|--------------------|-----------------|------------------|---------------------|------|-----|------|---------------------------------------------------------------------------------------------------------|
| BARIUM                    | 6/28/2023          | CLAY WATER DEPT | 0.0428           | 0.0482              | ppm  | 2   | 2    | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of natural deposits     |
| NITRATE                   | 9/5/2023           | CLAY WATER DEPT | 0.08             | 0.08                | ppm  | 10  | 10   | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits |
| NITRIE                    | 7/13/2021          | CLAY WATER DEPT | 0.11             | 0.11                | ppm  | 10  | 10   | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;                                   |

| Regulated<br>Contaminants       | Collection<br>Date                | Water System                | Highest<br>Value  | Range<br>(low/high) | Unit      | MCL              | MCLG       | Typical Source                                                                                          |
|---------------------------------|-----------------------------------|-----------------------------|-------------------|---------------------|-----------|------------------|------------|---------------------------------------------------------------------------------------------------------|
| BARIUM                          | 6/28/2023                         | CLAY WATER DEPT             | 0.0428            | 0.0482              | ppm       | 2                | 2          | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of natural deposits     |
| NITRATE                         | 9/5/2023                          | CLAY WATER DEPT             | 0.08              | 0.08                | ppm       | 10               | 10         | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits |
|                                 |                                   |                             |                   |                     |           |                  |            | Erosion of natural<br>deposits                                                                          |
| TETRACHLOROETHY<br>LENE         | 10/10/2023                        | CLAY WATER DEPT             | 1.8               | 1.8                 | ppb       | 5                | 0          | Discharge from factories and dry cleaners                                                               |
| GROSS ALPHA, EXCL.<br>RADON & U | 9/13/22                           | CLAY WATER DEPT             | 0.221             | 0.221               | pCi/<br>L | 15               | 0          | Erosion of natural deposits                                                                             |
| RADIUM-228                      | 9/13/22                           | CLAY WATER DEPT             | 0.476             | 0.476               | pCi/<br>L | 5                | 0          | Erosion of natural deposits                                                                             |
| Lead and Copper                 | Monitoring<br>Period<br>2020-2022 | 90 <sup>th</sup> Percentile | Range<br>Low/high | Unit                | AL        | Sites<br>over AL | household  | ource – Corrosion of<br>plumbing erosion of<br>posits/leaching from wood<br>res.                        |
| COPPER, FREE                    | 2020-2022                         | 0.0133                      | 0.0014-<br>0.0479 | ppm                 | 1.3       | 0                | systems; E | of household plumbing<br>rosion of natural deposits;<br>rom wood preservatives                          |
| LEAD                            | 2020-2022                         | 1                           | 0.044-2.3         | ppb                 | 15        | 0                | Corrosion  | of household plumbing;<br>natural deposits                                                              |

| Secondary Contaminants | condary Contaminants Collection Date Water System |                 | Highest<br>Value | Range<br>(low/high) | Unit | SMCL  |
|------------------------|---------------------------------------------------|-----------------|------------------|---------------------|------|-------|
| ALKALINITY, TOTAL      | 2023                                              | CLAY WATER DEPT | 77.5             | 24.8 -77.5          | MG/L | 10000 |
| ALUMINUM               | 2/14/2023                                         | CLAY WATER DEPT | 0.67             | 0.67                | MG/L | 0.05  |
| BORON, TOTAL           | 7/13/2021                                         | CLAY WATER DEPT | 9.4              | 8.6 - 9.4           | UG/L |       |
| CALCIUM                | 8/17/2021                                         | CLAY WATER DEPT | 14400            | 12800 - 14400       | UG/L |       |
| CARBON, TOTAL          | 2023                                              | CLAY WATER DEPT | 1.8              | 0.93 – 1.8          | ppm  | 10000 |
| CHLORIDE               | 7/13/2021                                         | CLAY WATER DEPT | 8.7              | 7.9 - 8.7           | MG/L | 250   |
| CHLORINE               | 11/2023                                           | CLAY WATER DEPT | 1.4              | 1.4                 | MG/L | 4     |
| GIARDIA LAMBLIA        | 12/3/2019                                         | CLAY WATER DEPT | 1                | 0 - 1               |      | 1     |
| IRON                   | 2/14/2023                                         | CLAY WATER DEPT | 0.065            | 0.065               | MG/L | 0.3   |
| MAGNESIUM              | 2/14/2023                                         | CLAY WATER DEPT | 3900             | 3900                | UG/L |       |
| MANGANESE              | 2/14/2023                                         | CLAY WATER DEPT | .015             | 0.015               | MG/L | 0.05  |
| PH                     | 5/18/2020                                         | CLAY WATER DEPT | 8.9              | 8.9                 | SU   | 8.5   |
| POTASSIUM              | 8/17/2021                                         | CLAY WATER DEPT | 1540             | 1330 - 1540         | UG/L |       |
| SODIUM                 | 8/17/2021                                         | CLAY WATER DEPT | 5.32             | 5.2 - 5.32          | MG/L | 1000  |
| SULFATE                | 8/17/2021                                         | CLAY WATER DEPT | 37.8             | 29.9 - 37.8         | MG/L | 250   |
| ZINC                   | 7/13/2021                                         | CLAY WATER DEPT | 0.0056           | 0.0025 - 0.0056     | MG/L | 5     |

| Unresolved<br>Deficiency<br>Date Identified | Facility          | Comments                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/2/2020                                   | LOWER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank in a different location to close this deficiency. The Tank is severely corroded and due to this corrosion, it is no longer in service. |
| 12/2/2020                                   | UPPER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank adjacent to the existing tank to close this deficiency. The tank is severely corroded and could fail at any time.                      |
| 10/26/2023                                  | LOWER MAYSEL TANK | The storage tank has holes. (64CSR77-9.1.1) During a previous tank cleaning and sandblasting project it was discovered the tank walls was severely dimpled due to interior corrosion and numerous small holes existed in the                                                             |

| center of many of the dimples. Please ensure the storage tank holes are repaired. The system has a project where |
|------------------------------------------------------------------------------------------------------------------|
| the tank is to be replaced.                                                                                      |

#### Please Note: Because of sampling schedules, results may be older than 1 year.

During the 2023 calendar year, the water systems that we purchase water from had the below noted violation(s) of drinking water regulations.

| Water System    | Туре | Category | Analyte | Compliance Period |
|-----------------|------|----------|---------|-------------------|
| CLAY WATER DEPT | None | None     | None    | None              |

There are no additional required health effects violation notices.

There are no additional required health effects notices.

This Consumer Confidence Report is not being mailed to each customer. A copy can be provided upon request by calling our office at 304-587-7579.

#### Testing Results for: CLAY CO PSD-HARTLAND

| Microbiological                | Result                         | MCL | MCLG | Typical Source |
|--------------------------------|--------------------------------|-----|------|----------------|
| No Detected Results were Found | d in the Calendar Year of 2023 |     |      |                |

| Disinfection Byproducts          | Sample Point                              | Monitoring<br>Period | Highest<br>LRAA | Range (low/high) | Unit | MCL | MCLG | Typical Source                            |
|----------------------------------|-------------------------------------------|----------------------|-----------------|------------------|------|-----|------|-------------------------------------------|
| TOTAL HALOACETIC<br>ACIDS (HAA5) | FOLA<br>BOOSTER<br>STATION 855<br>FOLA RD | 2023                 | 44.5            | 22 - 67          | ppb  | 60  | 0    | By-product of drinking water disinfection |
| ТТНМ                             | LITTLE<br>GENERAL<br>13992 CLAY<br>HWY    | 2023                 | 57              | 18 - 98          | ppb  | 80  | 0    | By-product of drinking water chlorination |

| Lead and Copper | Monitoring<br>Period | 90 <sup>th</sup><br>Percentile | Range<br>(low/high) | Unit | AL  | Sites<br>Over AL | Typical Source                                                                                               |
|-----------------|----------------------|--------------------------------|---------------------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------|
| COPPER, FREE    | 2023                 | 0.0066                         | 0.00083 – 0.0189    | ppm  | 1.3 | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits; Leaching from wood<br>preservatives |
| LEAD            | 2023                 | <0.5                           | 0.079 – 0.41        | ppb  | 15  | 0                | Corrosion of household plumbing systems;<br>Erosion of natural deposits                                      |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

CLAY CO PSD-HARTLAND is working towards identifying service line materials throughout the water distribution supply. The service line inventory is required to be submitted to the state by October 16, 2024. The most up to date inventory is located at the Clay County Public Service District Office, if you have any questions about our inventory, please contact BEVERLY S. PIERSON at 304-587-7579.

| Chlorine/Chloramines<br>Maximum Disinfection Level | MPA  | MPA Units | RAA  | RAA Units |  |
|----------------------------------------------------|------|-----------|------|-----------|--|
| 2023                                               | 1.71 | MG/L      | 1.01 | MG/L      |  |

During the 2023 calendar year, we had no violation(s) of drinking water regulations.

| Compliance Period | Analyte | Comments |  |  |
|-------------------|---------|----------|--|--|
|                   |         |          |  |  |

Additional Required Health Effects Language:

Analyte

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

**Highest Value** 

There are no additional required health effects violation notices.

Facility

Some or all of our drinking water is supplied from another water system. The table below lists all of the drinking water contaminants, which were detected during the 2023 calendar year from the water systems that we purchase drinking water from.

Unit

Month Occurred

| Turbidity                       | Treatmen                          | t Plnat 1                   | 1.8               | NTU                 |           |                  |                                                                                                     | October                                                                                                 |  |  |
|---------------------------------|-----------------------------------|-----------------------------|-------------------|---------------------|-----------|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Regulated<br>Contaminants       | Collection<br>Date                | Water System                | Highest<br>Value  | Range<br>(low/high) | Unit      | MCL              | MCLG                                                                                                | Typical Source                                                                                          |  |  |
| BARIUM                          | 6/28/2023                         | CLAY WATER DEPT             | 0.0428            | 0.0482              | ppm       | 2                | 2                                                                                                   | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of natural deposits     |  |  |
| NITRATE                         | 9/5/2023                          | CLAY WATER DEPT             | 0.08              | 0.08                | ppm       | 10               | 10                                                                                                  | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits |  |  |
| NITRIE                          | 7/13/2021                         | CLAY WATER DEPT             | 0.11              | 0.11                | ppm       | 10               | 10                                                                                                  | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits |  |  |
| TETRACHLOROETHY<br>LENE         | 10/10/2023                        | CLAY WATER DEPT             | 1.8               | 1.8                 | ppb       | 5                | 0                                                                                                   | Discharge from factories and dry cleaners                                                               |  |  |
| GROSS ALPHA, EXCL.<br>RADON & U | 9/13/22                           | CLAY WATER DEPT             | 0.221             | 0.221               | pCi/<br>L | 15               | 0                                                                                                   | Erosion of natural deposits                                                                             |  |  |
| RADIUM-228                      | 9/13/22                           | CLAY WATER DEPT             | 0.476             | 0.476               | pCi/<br>L | 5                | 0                                                                                                   | Erosion of natural deposits                                                                             |  |  |
| Lead and Copper                 | Monitoring<br>Period<br>2020-2022 | 90 <sup>th</sup> Percantile | Range<br>Low/high | Unit                | AL        | Sites<br>over AL | household<br>natural de<br>preservati                                                               |                                                                                                         |  |  |
| COPPER, FREE                    | 2020-2022                         | 0.0133                      | 0.0014-<br>0.0479 | ppm                 | 1.3       | 0                | Corrosion of household pluml<br>systems; Erosion of natural depo<br>Leaching from wood preservative |                                                                                                         |  |  |
| LEAD                            | 2020-2022                         | 1                           | 0.044-2.3         | ppb                 | 15        | 0                | Corrosion                                                                                           | of household plumbing;<br>natural deposits                                                              |  |  |

| Secondary Contaminants | Collection<br>Date | Water System    | Highest<br>Value | Range<br>(low/high) | Unit | SMCL  |
|------------------------|--------------------|-----------------|------------------|---------------------|------|-------|
| ALKALINITY, TOTAL      | 2023               | CLAY WATER DEPT | 77.5             | 24.8 -77.5          | MG/L | 10000 |
| ALUMINUM               | 2/14/2023          | CLAY WATER DEPT | 0.67             | 0.67                | MG/L | 0.05  |
| BORON, TOTAL           | 7/13/2021          | CLAY WATER DEPT | 9.4              | 8.6 - 9.4           | UG/L |       |
| CALCIUM                | 8/17/2021          | CLAY WATER DEPT | 14400            | 12800 - 14400       | UG/L |       |
| CARBON, TOTAL          | 2023               | CLAY WATER DEPT | 1.8              | 0.93 – 1.8          | ppm  | 10000 |
| CHLORIDE               | 7/13/2021          | CLAY WATER DEPT | 8.7              | 7.9 - 8.7           | MG/L | 250   |
| CHLORINE               | 11/2023            | CLAY WATER DEPT | 1.4              | 1.4                 | MG/L | 4     |
| GIARDIA LAMBLIA        | 12/3/2019          | CLAY WATER DEPT | 1                | 0 - 1               |      | 1     |
| IRON                   | 2/14/2023          | CLAY WATER DEPT | 0.065            | 0.065               | MG/L | 0.3   |
| MAGNESIUM              | 2/14/2023          | CLAY WATER DEPT | 3900             | 3900                | UG/L |       |
| MANGANESE              | 2/14/2023          | CLAY WATER DEPT | .015             | 0.015               | MG/L | 0.05  |
| PH                     | 5/18/2020          | CLAY WATER DEPT | 8.9              | 8.9                 | SU   | 8.5   |
| POTASSIUM              | 8/17/2021          | CLAY WATER DEPT | 1540             | 1330 - 1540         | UG/L |       |
| SODIUM                 | 8/17/2021          | CLAY WATER DEPT | 5.32             | 5.2 - 5.32          | MG/L | 1000  |
| SULFATE                | 8/17/2021          | CLAY WATER DEPT | 37.8             | 29.9 - 37.8         | MG/L | 250   |
| ZINC                   | 7/13/2021          | CLAY WATER DEPT | 0.0056           | 0.0025 - 0.0056     | MG/L | 5     |

| Unresolved<br>Deficiency<br>Date Identified | Facility          | Comments                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/2/2020                                   | LOWER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank in a different location to close this deficiency. The Tank is severely corroded and due to this corrosion, it is no longer in service.                                                                                  |
| 12/2/2020                                   | UPPER MAYSEL TANK | This Significant Deficiency was identified in the previous Sanitary Survey – A project is currently underway to replace this tank with a new tank adjacent to the existing tank to close this deficiency. The tank is severely corroded and could fail at any time.                                                                                                       |
| 10/26/2023                                  | LOWER MAYSEL TANK | The storage tank has holes. (64CSR77-9.1.1) During a previous tank cleaning and sandblasting project it was discovered the tank walls was severely dimpled due to interior corrosion and numerous small holes existed in the center of many of the dimples. Please ensure the storage tank holes are repaired. The system has a project where the tank is to be replaced. |

#### Please Note: Because of sampling schedules, results may be older than 1 year.

During the 2023 calendar year, the water systems that we purchase water from had the below noted violation(s) of drinking water regulations.

| Water System    | Туре | Category | Analyte | Compliance Period |  |
|-----------------|------|----------|---------|-------------------|--|
| CLAY WATER DEPT | None | None     | None    | None              |  |

There are no additional required health effects violation notices.

There are no additional required health effects notices.

This Consumer Confidence Report is not being mailed to each customer. A copy can be provided upon request by calling our office at 304-587-7579.

### **Additional Information:**

Turbidity is the measure of cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

All other water test results for the reporting year 2018 were all non-detects.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The **Clay-Roane PSD**, and **Clay County PSD** are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has

been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/leadt at our offices during business hours.

This report will not be mailed. A copy will be made available for review or your use upon request.

### System Name: Clay Roane PSD, Clay PSD Ivydale, Clay PSD Triplett, Clay PSD Hartland

### **PWS**: <u>WV3300806</u>, <u>WV3300809</u>, <u>WV3300810</u>, <u>WV3300811</u>

**Disclaimer:** This document contains public information on the Water test results/ compliance issues for your Public Water System. The Consumer Confidence Report addresses public information state, and federal laws and regulations regarding your PWS.

Knowledgeable professionals prepared this document using current information obtained by the water system. The authors make no representation, expressed or implied, that this information is suitable for any specific situation. The authors have no obligation to update this work or to make notification of any changes in statutes, regulations, information, or programs described in this document. Publication of this document does not replace the duty of water systems to warn and properly inform their customers concerning health and safety risks and necessary precautions with their water systems compliance.

Rural Community Assistance Partnership, Inc. assumes no liability resulting from the use or reliance upon any information, guidance, suggestions, conclusions, or opinions contained in this document.

Print Name

<u>6/19/2023</u>\_\_\_\_

Date

Signature

